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Abstract 

The classification of concrete damage in bridges 

poses challenges, characterized by time-consuming, 

hazardous, and often subjective inspection methods. 

Recognizing the need for efficient damage 

identification and the creation of 3D models for 

maintenance purposes, this paper introduces an 

innovative approach to the inspection of reinforced 

concrete bridges. The proposed methodology 

involves 3D reconstruction of a bridge, coupled with 

a concrete damage classification system based on 

severity. Notably, the analysis ensures objectivity 

through the implementation of deep learning for 

classifying concrete damage in UAV-captured 

images. A noteworthy aspect of this research is that, 

in the training models, a precision of over 90% is 

achieved for each type of concrete damage. This 

methodology serves as a valuable contribution to 

automating and streamlining concrete bridge 

inspections, aiming to reduce costs and enhance 

efficiency throughout its life cycle. 
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1 Introduction 

In contemporary society, bridges hold significant 

environmental significance by establishing vital 

connections between various localities. They play a 

crucial role in fostering economic and cultural 

development, among other societal factors [1–3]. 

Therefore, preserving their structural integrity, safety, 

and functionality is paramount throughout their lifespan, 

especially for emergency situations such as resource 

transportation and rescue operations [3,4]. 

Currently, numerous countries, particularly those in 

Europe and North America, confront the deterioration of 

an extensive infrastructure inventory that has surpassed 

its originally planned service life [1]. In the United 

States, the report states that 7.5% of bridges are 

categorized as structurally deficient, predominantly 

falling below the established standards [5]. In fact, a 

minimum of one-third of the over 600,000 bridges in the 

United States feature a concrete superstructure or 

wearing surface [6]. 

In recent years, notable bridge collapses attributed to 

various factors have occurred, including the Morandi 

cable-stayed bridge in Genoa, Italy (2018), the Florida 

International University Pedestrian Bridge (2018), and 

the Nanfang’ao steel single-arch bridge in Taiwan (2019) 

[4]. Taiwan, with over 28,000 bridges, faces challenges 

due to natural disasters like earthquakes, typhoons, and 

rainstorms, along with its unique geographic features, 

such as mountainous and stream-filled regions. Over the 

past decades, several bridge collapses have been 

attributed to various scour issues, including general 

scour and local scour [3]. 

Concrete structures are increasingly experiencing 

deterioration due to various factors such as aging, 

increased traffic loads, loadings from earthquakes and 

extreme weather conditions (wind, ambient vibrations) 

[4,5,7–9], such deterioration is usually caused by 

inadequate or untimely maintenance [1] Similarly, the 

prevalent structural configuration employed for bridges 

has been the multispan design with simply supported 

Reinforced Concrete (RC) girders. These girders are 

interconnected by transverse beams and are supported 

by piers and abutments at the ends, facilitating 

construction phases [1]. Consequently, while the 

emergence of cracks in concrete bridges is a crucial 

indicator of structural performance, it doesn't 

necessarily signify imminent collapse; however, it 

frequently results in diminished structural integrity 

[8,10]. Additionally, concrete damaged impact various 

aspects of structures, including bearing capacity, 

stiffness, energy absorption capacity, and resistance to 

reinforcement corrosion [8,9,11]. Therefore, timely 

detection and measurement of damaged elements are 

crucial for making informed decisions regarding 

necessary repairs and maintenance [8]. However, 

conventional inspection methods often prove laborious, 

time-consuming, and capital-intensive. Especially, in 

the case of large span bridges, traditional methods are 

not effective for rapid full-field monitoring and hence a 

radical monitoring approach is most needed [12]. 

During recent decades, ensuring life safety and the need 

to reduce inspection costs have emerged as the top 

priorities for practicing engineers and researchers [5]. 

Compared to the traditional contact methods, most 

of the noncontact Structural Health Monitoring (SHM) 

methods have improvement in the convenience and 
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efficiency of structural inspection and concrete damage 

[9]. SHM is a data processing approach that employs 

technology to offer early signals of disruption and the 

progression of damages and deterioration to avert 

potentially hazardous results to a specific structure, 

which is useful for enhanced decision-making [1,7]. The 

majority of existing SHM system consists of various 

sensors and accelerometers [7,13,14].  

Consequently, an increasingly number of SHM 

applications with noncontact means have been 

developed and applied for the monitoring and inspection 

of concrete damage in a variety of critical concrete 

structures [9]. The deployment of Unmanned Aerial 

Vehicles (UAV) for civil infrastructure monitoring is a 

relatively recent development, with only a limited 

number of practical case studies conducted for 

industries, monuments, and other civil structures. 

Typically, UAVs are equipped with an image 

acquisition system, and the captured data are manually 

processed [1,7,12]. While this approach is convenient, it 

involves labor-intensive efforts in quantifying and 

analyzing the acquired data [12]. 

In this paper, we propose a methodology for the 

classification of damage in the concrete components of 

a bridge, employing Deep Learning (DL) based method 

for image processing. DL serves as an automated 

solution for predicting and classifying data, with the 

Convolutional Neural Network (CNN) emerging as a 

prevalent and straightforward method, particularly well-

suited for image classification tasks. CNN excels in 

processing and categorizing information presented in 

image formats, making it a widely adopted approach in 

the realm of deep learning [15]. The images utilized in 

this analysis were captured by an Unmanned Aerial 

Vehicle (UAV). This approach leverages advanced 

algorithms to categorize and analyze the identified 

damaged elements, contributing to a nuanced 

understanding of structural integrity. The integration of 

UAV technology and CNN method in the proposed 

methodology offers a sophisticated and efficient means 

of assessing the condition of concrete elements in bridge 

infrastructure. This method extracts features of different 

abstract levels and maps raw pixel intensities of the 

crack patch into a feature vector through several fully 

connected layers. All convolutional filter kernel 

elements are trained from the data in a supervised 

fashion, learning from the labeled set of examples. This 

approach not only leverages advanced aerial imaging 

capabilities but also employs CNN to automatically 

extract and analyze features from the captured images, 

enhancing the precision of structural assessment in the 

context of concrete damage classification. 

The paper is organized as follows: In Section 2, we 

delve into the Background and Related Studies. Section 

3 provides the methodology for obtaining the 3D 

reconstructed case study with the classification of the 

damaged concrete using deep learning. The findings of 

our study are presented in Section 4, which covers the 

Results. Finally, Section 5 presents the scientific 

contribution and conclusions of this paper. 

2 Background and Related studies 

2.1 Concrete Damage classification 

During the last three decades, there has been notable 

expansion in the utilization of high-strength concrete 

applications in bridge construction [16]. The five most 

prevalent damage, as outlined in Table 1, encompass 

cracks, corrosion, efflorescence, spalling, and exposed 

steel reinforcement [17] . To establish a ranking system 

for the magnitude of primary damages in reinforced 

concrete, reference is made to Hüthwohl et al. [18]  and 

Highways England [19] particularly its document "CS 

450 Inspection of Highway Structures." This is 

undertaken with the objective of formulating a model to 

categorize concrete damages based on their severity.  

Hence, we have identified three magnitudes for each 

concrete damage, serving as benchmarks to evaluate 

bridge inspection damage classification methods: (1) 

Not Found (No color), (2) Moderate Damage (Orange 

color), and (3) Critical Damage (Red color). In instances 

where multiple damage types coexist, the color 

corresponding to the highest magnitude will be applied. 

As such, in the present article, neither the location of the 

damage nor the combination of types of damage in 

concrete were taken into consideration when calculating 

the magnitude. The focus was solely on the damage 

itself in a 288x288-pixel image. Additionally, due to the 

variability in image quality, it hinders the analysis of 

combinations of damage in concrete. 

2.2 Relevant studies 

The important aspect of the research presented in 

this paper lies in the utilization of computer vision to 

identify defects and damages, thereby establishing an 

objective classification process. 

 

 

Table 1 Damage scale for reinforced concrete. 

Damage 
Damage Scale (Color reference) 

No damage (No color) Moderate Damage (Orange) Major Damage (Red) 

Corrosion No signs of corrosion attack Moderate corrosion attack Major corrosion attack 

Crack 
No signs of cracks or difficult 

to detect visually 

Cracks less than 1 mm 

(difficult to detect visually) 

Cracks more than 1 mm (easily 

visible) 

Efflorescence 
No signs of efflorescence 

attack 
Moderate efflorescence attack Major efflorescence attack 

Exposed Bars No exposed bars Moderately exposed bars Fully exposed bars 

Spallation No spalls Minor deep spalls exposing Collapsed 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

723



Mansuri & Patel [20] devised an automated visual 

inspection system for defect detection in heritage 

structures, leveraging artificial intelligence through an 

R-CNN (Faster Region-based Convolutional Neural 

Network) object detection model. The inspection 

accuracy of this model demonstrated optimal detection 

precision, reaching 91.58%, particularly in identifying 

three damage types: "spalling," "exposed bricks," and 

"cracks." 

Zhao et al. [21] conducted a three-dimensional 

reconstruction based on images captured by unmanned 

aerial vehicles for the monitoring and inspection of 

dams, focusing on the identification of damages in the 

obtained images. Subsequently, non-contact optical 

measurements were performed for disaster prevention. 

Wang et al. [1] suggested a UAV-based method to 

promptly evaluate seismic risk in bridges. Their 

methodology encompassed the acquisition of aerial 

photogrammetric data and the automated extraction of 

geometric features, subsequently integrated into 

structural models to assess seismic risk in relation to 

capacity-demand. The feasibility of their approach was 

substantiated through a case study conducted on an 

Italian bridge, thus contributing valuable insights to the 

field of seismic risk assessment for infrastructure. 

Nappo et al. [22] proposed the utilization of 

Unmanned Aerial Vehicles (UAVs) for the semi-

automatic detection and classification of damages in 

asphalt-paved roads affected by landslides. Leveraging 

3D models and 2D images derived through UAV-based 

photogrammetry, the approach aimed to overcome the 

limitations associated with traditional visual inspections. 

The developed semi-automatic procedure quantitatively 

identified and classified longitudinal and transverse 

cracks in the pavement, presenting a swift, systematic, 

and objective alternative to conventional field surveys. 

Applied in the Province of Como, Northern Italy, the 

results underscored the methodology's utility for road 

management, providing maps of damage hotspots, 

pavement damage detectors, criteria based on the 

International Roughness Index (IRI), and road damage 

severity maps. 

3 Methods and Implementations 

3.1 Selected UAV 

The aerial survey was performed using a commercial 

quadrotor, Phantom 4 V2. (DJI, China). This portable 

UAV has a built-in GPS that is used for way-point 

navigation and dataset geotagging. The drone was 

deployed for visual inspections of various structural 

components across four reinforced concrete bridges. 

Figure 1 illustrates the implementation of the proposed 

methodology outlined in this paper for bridge inspection 

utilizing a drone. The specifications of both the vehicle 

and the camera, outlined in Table 2, play a crucial role 

in the image processing carried out by the deep learning 

model. 

Table 2 DJI Phantom 4 V2. technical specification. 

Unmanned Aerial 

Vehicle (UAV) 

DJI Phantom 4 V2 

Dimension (mm) 289.5x289.5x196 

Weight (kg) 1.375 

Max flight time Approx. 30 minutes 

Hovering flying accuracy 

(with GPS and vision 

system) 

Vertical: ±0.1m 

Horizontal: ±0.3m 

Max. speed (mph) 45 

Photo resolution 
5472x3648  

pixels 

Camera 
Sensor 1” CMOS 

Pixels 20 Mega 

Remote range (km) 8 

 
Fig. 1. UAV used for the data acquisition 

3.2 Data acquisition 

The task of data acquisition includes (i) site 

prechecking of the bridge and surrounding area, (ii) 

flight plan drafting, and (iii) on-site data collection. 

Firstly, an examination of the area should be conducted 

to consider multiple factors such as the complexity of 

the surroundings and the visibility of the structure (e.g., 

presence of obstacles/vegetation around the structure), 

the accessibility of the area to identify suitable take-off 

and landing points, and flight restrictions according to 

local regulations (e.g., the presence of no-fly zones, the 

highest permissible altitude for flying, etc.). Then, the 

planning of the flight path exerts the most significant 

influence on data quality, as it pertains to factors such as 

lighting conditions, camera angles, offset distances, the 

flight pattern chosen, and the level of overlap between 

images [1]. Additionally, to explain the relationship 

between camera angle and distance, the terminology 

ground sampling distance (GSD) is referred to the ratio 

between the measure of an actual object to a pixel size 

[1,23,24], which is used here to describe the image 

quality.  

Our work is motivated by a project aiming at the 

damage classification in concrete bridge elements 

within a millimeter (1 mm) of accuracy, which is 

considered adequate following previous research such 

as Chen et al. [23] who show a relationship between 

GSD and Working Distance (WD) for the DJI phantom 

4 UAV with respect to the tilt angle and offset distance. 
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The overlap (OV) represents the percentage of the 

object covered in two consecutive frames, depending on 

the distance to the center of two consecutive photos. 

The value of OV is one of the parameters for 

determining the fly path in the vertical and horizontal 

directions. Even though overlapping rates are seldom 

documented and seem to be chosen based on empirical 

observations, in Chen et al. [23]  it is recommended 60% 

±5% for endlap and 30% ±15% for sidelap. In this 

work, a 60% OV vertical and 30% OV horizontal 

direction should be considered in the to ensure the 

survey quality. 

After establishing the Ground Sample Distance 

(GSD), overlap (OV), an appropriate working distance 

(WD), and tilt angle that align with the research 

objectives for image acquisition, we then move forward 

to elucidate the procedure for capturing imagery of the 

structural elements to create 3D models, as detailed in 

the subsequent subsection. 

3.2.1 Super-structure 

Linear trajectories parallel to the longitudinal 

direction of the bridge and outer beams were employed, 

adjusting the inclination angle to ensure comprehensive 

coverage of the structural beam (See Fig. 2). 

 

Fig. 2. Image acquisition process of a concrete bridge 

structural beam. 

3.2.2 Sub-structure 

In the case of the pillars (see Fig. 3), linear 

trajectories are executed, aligning with the lateral 

elevation profile of the bridge at varying heights and 

employing different camera pitch and yaw angles 

(including upward orientation for mapping beneath the 

deck). Where deemed safe, additional spiral (or point of 

interest) flights along the height of each pillar are 

conducted to ensure comprehensive coverage of all 

surfaces. As for the abutments (see Fig. 4), a parallel 

survey will be conducted along the primary faces, 

adjusting both the height and inclination angles for a 

thorough inspection. 

 
Fig. 3. Image acquisition process of the structural 

column of a concrete bridge. 

 
Fig. 4. Image acquisition process of concrete bridge 

abutments. 

3.3 Imagen processing algorithms 

The images were captured at a resolution of 

5472x3648 pixels from a dataset comprising four 

distinct bridges. The selection of these bridges was 

based on a non-probability sampling approach, 

considering their proximity to the designated study area, 

The training dataset incorporates images from three of 

these bridges, totaling 848 images. Additionally, to 

enhance the performance of our training model, we have 

incorporated another dataset provided by Hüthwohl et al. 

[18]. As part of the validation dataset, we have selected 

the Iniche bridge (refer to Fig. 5) as a case study, 

yielding a total of 142 images. 

 

 
Fig. 5 Case study: Iniche bridge. Chiclayo, Perú. 
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This implies that a higher number of neurons require 

more parameters to be learned, increasing both the 

learning time and complexity of the model. To mitigate 

the size of the CNN model, the original image is resized 

to a smaller image, specifically 228x228 pixels. 

Subsequently, 384 images, each measuring 228x228 

pixels, were generated for every original image of 

dimensions 5472x3648 pixels. Regarding the image 

quality, it is important that the images have a good 

resolution, such as HD or 4K, since the reduced image 

used to analyze bridge damage (228 x 228 pixels) may 

present noise that generates incorrect image treatment in 

the model. Additionally, the normalization of the pixels 

should be between 0 and 1, following the image 

binarization criterion based on Elizondo et al. [25]. 

3.3.1 Data Preparation 

In this paper, we employ a deep convolutional neural 

network based in Zhang et al., [26]. In the data 

preparation phase, we implemented a code snippet using 

the TensorFlow Keras API. This code segment focuses 

on organizing and structuring the input data for model 

training. Subsequently, the images are reshaped into the 

appropriate format for TensorFlow, ensuring 

compatibility by adjusting the dimensions to (number of 

images, width, height, channels). The reshaped data is 

then stored in an HDF5 file format using the h5py 

library, providing an efficient and compressed 

representation of the dataset. 

3.3.2 Data Training 

In the data training phase, we utilized the 

TensorFlow Keras API to construct a Convolutional 

Neural Network (CNN) architecture for the 

classification of concrete damage. The input data, stored 

in an HDF5 file format, is loaded, and pre-processed, 

including resizing the images to a standardized 

dimension of 228x228 pixels and normalizing pixel 

values between 0 and 1. The CNN model is designed as 

a sequential stack of layers, starting with a 

convolutional layer with 16 filters, followed by max-

pooling, batch normalization, and dropout for 

regularization. This pattern is repeated with additional 

convolutional layers, each increasing the number of 

filters. The final layer is a dense layer with softmax 

activation, representing the three categories of damage 

scale (See Table 1). During training, the model is fed 

with the pre-processed images, aiming for 30 epochs 

with a batch size of 64 and a validation split of 20%. 

The trained model is then saved for subsequent use. 

This architecture combines convolutional and pooling 

layers with normalization and dropout techniques, 

demonstrating its potential for accurate concrete damage 

classification in structural inspection applications. 

Regarding the number of images in the training model, 

this is summarized in the following Table 3. As such, it 

is important to note that from the set of photos, each 

image was manually labeled according to the concrete 

damage. 

Table 3 Number of samples used in the training model. 

Concrete 

Damage 

Training Samples 

No 

damage 

Moderate 

Damage 

Major 

Damage 

Corrosion 

2180 

544 690 

Cracks 4609 6998 

Efflorescence 1196 1094 

Exposed Bars 289 766 

Spalling 1310 1592 

3.3.3 Data Classification 

In this section, a function is developed to manage 

the loading, resizing, and normalizing each grayscale 

image to fit the required input dimensions of the model. 

From the case study, 142 images of 5472x3648 pixels 

were obtained from which only 89 images were selected 

for the classification process.  

The subsequent iteration through each image file 

involves making predictions using the loaded model. 

Additionally, contours are detected in the original image, 

and based on the predicted class, they are highlighted 

with semi-transparent colors to emphasize the severity 

of concrete damage. 

Notably, the code incorporates error handling to 

ensure the successful loading and preparation of images. 

Furthermore, contours are drawn on images to visually 

represent the detected damage patterns, contributing to a 

more comprehensive analysis. The entire process is 

geared towards automating the classification of concrete 

damage, making it a valuable tool for efficient structural 

health assessment. 

3.4 3D Reconstruction 

The initial step involves the application of 

colorization to highlight the severity of the damage in 

each 228x228-pixel image. Subsequently, a meticulous 

merging process is undertaken to reconstruct these 

images to their original resolution of 5472x3648 pixels. 

This merging process is pivotal, as resizing each 

image independently would result in the loss of critical 

georeferencing information. This information, including 

Latitude, Altitude, Longitude, Focal length, orientation, 

and other metadata, is embedded in the data provided by 

the drone for each image. Maintaining the integrity of 

this georeferencing data is essential for the accuracy of 

the final 3D spatial reconstruction.  

Following the image merging, each reconstructed 

image is meticulously reassigned its corresponding 

metadata. This involves a comprehensive analysis and 

adjustment to ensure that the geospatial information 

aligns accurately with the reconstructed visual data. 

To achieve a technically robust 3D reconstruction, 

specialized software designed for photogrammetric 

processing of digital images is employed. Notably, 

Agisoft Metashape stands out as a prominent example 

of such software. This software employs advanced 

algorithms and techniques to process the merged images 

and generate precise 3D spatial data. 
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4 Results 

4.1 Data Training 

The key metrics during the training of the deep 

learning model are summarized in Table 4. 

Table 4. Loss and accuracy of the training model 

Concrete 

Damage 
Epoch 

Training Validation 

Loss 

(Accuracy) 

Loss 

(Accuracy) 

Corrosion 

1/30 
1.0573 

(0.7799) 

4.4956 

(0.6442) 

30/30 
0.0928 

(0.9766) 

3.3723 

(0.5447) 

Cracks 

1/30 
1.0725 

(0.7264) 

9.1893 

(0.1653) 

30/30 
0.1149 

(0.9625) 

0.6825 

(0.8677) 

Efflorescence 

1/30 
1.5263 

(0.6063) 

1.0956 

(0.3747) 

30/30 
0.1526 

(0.9452) 

2.6873 

(0.6756) 

Exposed Bars 

1/30 
0.9333 

(0.8396) 

2.0844 

(0.6909) 

30/30 
0.0388 

(0.9884) 

1.1794 

(0.8779) 

Spalling 

1/30 
1.4644 

(0.6148) 

1.9797 

(0.4435) 

30/30 
0.1393 

(0.9542) 

2.9182 

(0.5280) 

4.2 Data Classification 

Given the extensive dataset, we present a table 

displaying the classification of select images featuring 

damaged concrete along with their corresponding 

confidence levels. 

In Table 5, the classification results of concrete 

damage for a photograph are illustrated. It can be 

observed that, in the case of the example, after 

processing, only corrosion, efflorescence, and spalling 

damage are noticeable. Similar results are obtained for 

all other photographs based on the level of damage they 

exhibit. 

4.3 3D Reconstruction 

After the classification process, the 228x228 pixels 

colored images are combined with their counterparts 

from the original image, which is 5472x3648 pixels 

(See Fig. 6). Subsequently, the metadata from the 

original image is transferred to the reconstructed image.  

 

 

Table 5. Classification results for concrete damage in a 

288x288 pixel example photograph 

Concrete 

Damage 

Example 

image 

Damage 

Classification 

(Level of confidence) 

Corrosion 

 
(228x228 

pixels) 

 

 
Major (59.74%) 

 

Cracks 

 
No color (100.00%) 

 

Efflorescence 

 
Moderate (98.06%) 

 

Exposed Bars 

 
No color (88.44%) 

 

Spalling 

 
Major (99.88%) 
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Fig. 6 Reconstructed image with concrete damage 

classification 

 

Ultimately, utilizing these 89 reconstructed images 

from the case study, we proceed to generate a point 

cloud and perform the 3D reconstruction of the bridge 

(See Fig. 7). 

 

 
Fig. 7 3D reconstruction of the Iniche bridge with 

concrete damage classification 

5 Conclusions and discussions 

The proposed methodology demonstrates 

efficiency in bridge inspections by combining three-

dimensional reconstruction with concrete damage 

classification using deep learning. This suggests an 

effective and automated alternative for assessing bridge 

conditions, minimizing time and costs associated with 

traditional methods. 

The implementation of deep learning in concrete 

damage classification ensures an objective approach. 

The model's ability to accurately identify and categorize 

defects in concrete from UAV-captured images suggests 

a significant improvement in result objectivity 

compared to conventional inspection methods. 

Upon reviewing the outcomes derived from the 

228x228 pixel images, it is evident that a more 

extensive dataset is essential for refining the training 

model. Also, due to the use of an external database, the 

GDS has been variable which affects the quality of the 

images and therefore affects the training database. 

Addressing the loss of georeferenced information 

after resizing images is achieved through three-

dimensional reconstruction, where the original metadata 

is transferred to the reconstructed images. This 

highlights the importance of integrating geospatial data 

for a more comprehensive and accurate assessment of 

infrastructure. 

The main limitations of this method were that it 

does not assess the quality of the images due to their 

reduction in size. Additionally, the classification of the 

magnitude of the damage was partially subjective. Other 

limitations included the acquisition of data, where 

external conditions to the infrastructure, such as the 

flow of a river, varied the quality of the images. 
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